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I. INTRODUCTION 

In a recent paper Rosenzweig and VenezianoI (hereafter referred 

to as RV) have argued that the Adler condition on pion amplitudes can be 

derived from the general principles of S-matrix theory. More specific- 

ally they argue that a certain inclusive sum rule will be violated as m -0 
77 

unless the Adler condition is satisfied in 7.“~ scattering, If we accept 

their argument, then we are in the remarkable position that most of the 

soft pion theorems of PCAC and current algebra or, equivalently, chiral 

symmetry have been shown to follow frcm the general principles of S-matrix 

theory. Some time ago, Mandelstam’ shcwed that the Adler condition alone 

is sufficient to obtain most results of current algebra. 

From a field theoretic point of view it would be very surprising 

to have a “first principles”, model i,ndependent derivation of the Adler 

condition. The pion in the o-model formally satisfies the Adler condition. 

HOWever, a theory based only on pions interacting through a XTI 
4 

coupling 

does not. 

In addition to assuming the general principles of S-matrix theory, 

RV make a specific dynamical assumption of pole dominance. Although 

at first sight their assumption appears harmless, we will argue that it is 

not in general justified. In particular we will show that there is a simple 

multiperipheral model which serves as a counter-example to RV’ s as- 

sertions. Thus, it appears that we still do not ha-ie a model independent 

derivation of the Adler condition. However, it is still of considerable in- 

terest that an S-matrix assumption of pole dominance seems to be equivalent 

to PCAC. 
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The paper is organized as follows. In the next section we discuss 

some general properties of massless particles and infrared divergences. 

Then we discuss RV’ s calculation and our objection to their pole domin- 

ance assertion. The multiperipheral model mentioned above is developed 

in the last section and an appendix. 

II. MASSLESS PARTICLES AND INFRARED PHENOMENA 

The phenomenon discovered by RV is not unrelated to the infrared 

divergences which are well known to appear in theories with massless 

particles. Before discussing the specific calculation of RV it is therefore 

useful to look at some general features of the infrared problem. 

Consider a theory which contains a boson of mass p and let 

A(k1.. kn) be an on-shell scattering amplitude calctilated withthis theory. 

If we let p tend to zero, one of two situations will occur: either 

(i) As p-0 A will diverge for all values of the external momenta 

kl.. .k 
n 

(ii) For g eneral momenta kl.. . kn A will remain finite. It may 

however be singular in p for certain exceptional momenta. 

Ordinary quantum electrodynamics is an example of case (i). 

There, as is well known, all the scattering amplitudes blow up as the photon 

mass goes to zero. We might call this situation a true infrared divergence. 

In this case the S-matrix ceases to exist in the limit k-+ 0. 
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If we ignore wave function renormalization3 (which in any case does not 

appear in the S-matrix), a massless pion will give rise to only the milder 

divergence of type (ii). Consider a theory of massive nucleons interacting 

- 
with massless pions through the coupling gNy5Nlr. By looking at a few 

Feynman diagrams one can easily convince himself that for general values 

of the external momenta there is no infrared divergence in the S-matrix. 

The reason is that the nucleons can emit the pseudoscalar pions only in 

P-waves (as opposed to S-waves for photons). Therefore, the amplitude 

for a nucleon to emit a soft pion vanishes kinematically and there are, in 

general, no infrared infinities. We can further allow the pions to interact 

among themselves through a An 
4 

coupling. There is still no true infra- 

red divergence because a pion cannot emit a single softpion but rather 

must emit a pair. Two particle phase space keeps the pair emission from 

being infrared divergent. This is not to say, however, that this theory has 

no infrared infinities. For exceptional values of the external four mo- 

menta, the S-matrix is infrared divergent. As an example consider the 

r-v scattering diagram in Fig. (1). It is (infrared) finite everywhere ex- 

cept in the forward direction. The forward amplitude does , however, blow 

up for massless pions. By unitarity an infinite forward amplitude should 

imply an infinite *-v cross section. That t.he n-TT cross section is, in 

fact, divergent is easily seen by squaring the diagram in Fig. (2) and in- 

tegrating over phase space. The physics behind this infinite cross section 

is the same as that in Coulomb scattering. In the presence of a long 
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range force cross sections computed with incoming particles in plane 

wave states (rather than wave packets) are infinite. 
4 

The above remarks, although based on observations about 

Feynman diagrams in a particular model, are probably general. If there 

were a massless pseudoscalar hadron, the major qaalitative effect would be 

that the S-matrix could become infinite in certain kinematic configurations. 
3 

These infinit.ies would be the reflection, through unitarity, of infinite (al- 

though physically sensible) cross sections. 

Massless pions which obey the Adler condition (as the real ones 

seem to) would not lead to any infrared singularities. In particular all - 

cross sections would be finite. This is an essentially trivial consequence 

of the observation that the Adler condition makes soft pions decouple from 

everything. In fact, the Adler condition is probably eqtilvalent to demand- 

ing that all hadron cross sections remain finite as m -+O. But, since 
i-T 

there is not anything unphysical about some cross-sections becoming in- 

finite, one can hardly use this remark to “derive” the Adler condition. 

Finally, what has been said in this section is based on knowledge 

derived from finite orders in perturbation theory. The argument of RV 

uses full non-linear unitarity, which of course is r.ot perturbative. 

Thus, at this point we might still worry that some peculiar, distinctly 

non-perturbative, infrared phenomenon exists. Later we will argue, by 

means of a specific model. that there is no evidence for such an occur- 

rance. 



III. THE UNITARITY ARGUMENT OF ROSENZWEIG AND VENEZIANO 

In this section we discuss the unitarity argument of RV. First 

we give a simplified, although somewhat imprecise, derivation of their 

principle resuit. We then point out where they make a physically ques- 

tionable assumption about pole dominance. Finally, we briefly describe a 

multiperipheral model which disagrees with their result but is otherwise 

quite reasonable. The details of the model are presented in the following 

section and in the appendix. 

The argument of RV can be paraphrased as follows. Consider that 

part of the TT-~ total cross section which comes from one of the pions frag- 

menting into a pion pair with mass s’ , while the other pion turns into a mas- 

sive “nova” of mass M. The kinematics are shown in Fig. (3). We will 

consider only that region of phase space in which s’ and t are small 

(<, 1 GeV) while s and M are large i>> 1 GeV). Because t is small in this 

region, it may be reasonable to assume that the process is dominated by one 

pion exchange as shown in Fig. ;4). In fact, RV argue that as m -0 pole 
R 

dominance becomes an increasingly good approximation. Let us tentatively 

assume pole dominance and see what happens. 

Clearly the total ~-TI cross section is greater than this partial 

cross-section integrated over our limited region of phase space. SOllIe 

straightforward but tedious kinematics then leads to 

A(&, M$ + 4mz f 

T 
A’(=+ -5, s) 

) (1 - 9’ P~~,M’)H(~‘) l2 Ldtds’dM2 (1) 
(t-m ) 

rr 
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where 

A = usual triangle function 

c = rl-77 total cross section 
nTT 

C = numerical constant 

H(s’) = J(A(s’ , cos8)12d CDS 9 

A(s’ , cos 8) : Elastic x-7 scattering amplitude 

R = region of phase space defined by -t,,< t < t mln, to= fixed number <1(GeV)f 

,,;< s’ ‘cs;> sio=~ fixed number < l(GeV;’ 

2 
xOs<M u:s, 

1 
0 < x0< xI< 1 are fixed numbers . 

Here the term “fixed ncmbers” means something which remains fixed and 

finite in a limit, scmn to be taken, where s -co and m -0. 
il 

Note that the derivation of Eq. (1) does no? really depend on unitarity 

in the ‘sense that the equation ImT = TT t was not used. Actually all that 

went into Eq. (1) was the fact that the total cross section is a sum of pos- 

itive partial cross sections, plus the assumption of pole dominance. Some 

readers may be worried about double counting. That is, there may be 

some further low energy dipions in the “nova” which could confuse mat- 

ters. In RV’ s work this difficulty is avoided through the use of momen- 

tum conservation sum rules for inclusive distributions. The difference 

between RV’ s more precise approach and ours is not significant for the 

problem at hand. 

To proceed further.. it is convenient to assume that 

UTliil 3) - satlog s) P 
(2) 
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as s - co. Then dividing through by CJ 
TTT 

(s), setting M2=xs and taking 

the limit s -co yields 

1 > c, 1 .ib ;minx~+l(l- 0 4m2-t 4$)+H(s’) I2 2 dxds’ dt (3) 
Tr 0 (t-m,) 

where in this limit t has become 
min 

s’ 
t = -x(-- 

2 
mm 1-x mn) (4) 

The t integral is easily done, but we have to remember that the actual 

upper limit on s’ is the smaller of s’ 
0 

and the valve of s’ for which 

tmin= -to. Doing this and introducing a new integration variable y : 

sj/m2 
TI 

yields 

’ < C l,’ ~~“x”il’l-$‘H(m$y)[ ’ 
1 ] dxdy 

-(l-x)+? to 
(5) 

x -2+1 
m 

t0b4 
* 

YO 
= min { sb/m2, 

Ti 2 - (l-x)} . 
m x 

1T 

Let us now consider the limit m --0 with s’ 
T 0 

and t o fixed. In this 

limit v o tends to infinity and the result is 

1 > (const) H(0) log(cw) (6) 

which is clearly a contradiction unless H(0) vanishes. One can easily con- 

vince himself that for scattering of massless pions, the Adler condition 

is precisely the statement that H(0) = 0. This is RV’ s main result. 

It is perhaps not surprising that, because of infrared problems, 

something funny happens when m 
Tl 

is actually zero. The peculiar thing 
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about Eq. (6) is that log (co) is really log (m 
-2 
77 

) which means that the in- 

equality will be violated for some small but finite pion mass unless the 

Adler condition is satisfied. Hence if we accept the assumptions which 

lead to Eq. (1) then the Adler condition for TI-TI scattering has been de- 

rived from “first principles”. 

Recalling that the basic ingredients of Eq. (1) were (i) the fact 

that the total cross section is a sum of positive partial cross sections and 

(ii) pole dominance in the region of phase space under consideration, it is 

evident that (i) is sacred but (ii) could be questioned. In this regard, it 

is important to keep in mind that we have assumed the pion pole dominates 

all the way from t out to -t 
mln 0 

where t 
0 

is independent of m 
lr’ 

A 

more conservative assumption would be that only those t-singularities 

with masses less than t 
0 

should count. As m - 0 this would include not 
Tr 

only the pion pole, but three pion effects, five pion effects and so on. 

There is no a-priori guarantee that the effect of this infinite number of multi- 

pion singularit.ies is not at least as strong as that of the pole, 

We will now proceed to argue that the pole does not in general 

dominate. Let us agree to call the square of the blob in the lower half of 

Fig. (4) the “off-shell cross section” una(t, m2) for a virtual pion of 

mass t incident on a real pion. In this language, the pole dominance as- 

sumption is equivalent to approximating [r ,,(L ‘ m ) by the on shell cross 

section K 
2 

(m , M2) f (T 
ml * 

r7(M2) as was done to obtain Eq. (1). In Fig. (5) 

we show some particular contributions to [r TT(t, M’). When the pion 
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mass is small so that the emitted pion pairs can carry off almost zero 

momenta, the singularities from the repeated pion exchange poles can 

pile up near t = 0, providing just the sort of multi pion effects alluded 

to above. Technic ally, these multiple pion poles can give u(t, M2) a 

strong t-dependence. In fact, as we shall see, any damping of u(t, M2) 

t 
for - 

M2 
>> 1 is sufficient to eliminate the logarithmic divergence in Eq. (5). 

Since the diagrams shown in Fig. (6) are summed by the multi- 

peripheral equation their properties can be studied in detail. Their pres- 

ence does, in fact, invalidate the pole dominance assumption. Before 

going into this however, we should justify keeping the multiperipheral dia- 

grams while ignoring other multi-pion effects. This is not hard. It is 

quite clear that RV’ s log m 
n 

divergence is symptomatic of an infrared 

problem arising from the long range force associated with a. massless pion. 

Now as m 
TI 

-0 the longest range contribution to the ~-TT cross section 

comes from those diagrams which have the largest number of single pion 

exchanges. These are, of course, just the multiperipheral diagrams. 

Also, the pairs emitted along the chain must carry off very small momenta 

if the force is to remain long ranged. Therefore, we can approximate the 

TT-TT elastic amplitude by constants as far as the leading long range terms 

are concerned. Thus a simple multiperipheral model based on pions inter- 

acting through a Xrr 
4 

coupling should be an adequate guide to the leading be- 

havior of pion amplitudes as m -0. 
TI 

We have therefore studied a model in which m 
lm 

is given by the 
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multiperipheral chain shown in Fig. (6). The elastic m amplitudes are 

taken to be constants. Clearly the Adler condition is violated unless our 

constant ri-i~ amplitude vanishes identically. The model does, however, 

satisfy the limited “unitarity” requirement that the total cross section is 

the sum of positive partial cross sections. Furthermore, one can obviously 

separate out a pion exchange pole as in Fig. (4). Thus the model satisfies 

the “sacred” assumptions of RV. However, for precisely the reasons al- 

luded to above the pole does not dominate. There is nothing the matter 

with the model for any finite value of m 
ii 

In particular, the total cross 

section as calculated in the model satisfies the Froissart bound 5 if the 

coupling is not too strong. When m 
Tr 

= 0, the cross section blows up, but 

this is to be expected according to our ger.eral remarks about long range 

interactions. 

In the next section, we study the multiperipheral equation in de- 

tail. To close this section, we remark that in a world where the Adler 

condition is satisfied, the assumption of pole dominance probably would be 

justified. If the Adler condition is satisfied the multiple emission of soft 

pions which leads to the Gdependence of cr(t, M2) would be surpressed. 

Thus, in the real world pole dominance may be a good approximation. 

However, to derive the Adler condition from pole dominance seems to be a. 

circular argument. But, as mentioned before, it is quite interesting that 

an S-matrix “axiom” of pion pole dominance appears to be equivalent to a 

field theoretic “axiom” of PCAC. 
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IV. 12 MULTIPERIPHERAL MODEL 

In the previous section we argced that as the pion mass vanishes 

the most singular contributions to m 
?rTr 

are given by a simple multiper- 

ipheral model based on pions interacting through a Xx 
4 

coupling. In 

this section we shall study this model, in which r 
TTT 

is given by the multi- 

peripheral chain shown in Fig. (6). 

Since we are ultimately interested in letting m -0 we first set 
77 

the mass of the produced pions equal to zero, while keeping the mass of the 
the 

exchanged pions non zero. This majorizes ,&loss section with finite pro- 

duced pion mass, since the kernal of the integral equation that generates 

the multiperipheral graphs is proportional to the Z-body phase space of 

the produced pions which is increased as their mass vanishes. Of course 

setting the produced pion masses equal to zero does not cause m to 
TIT 

diverge since the range of the interaction remains finite 

One might argue that it is unrealistic to assume a pointlike An4 

coupling for an infinite range of TUT subenergies. However as the pro- 

duced pion mass vanishes this objection becomes irrelevent. This is be- 

cause the most singular part of CJ will be determined by the pi 
4 

TlT 
ampli - 

tude near zero energy. As long as this amplitude is approximately con- 

stant from threshold to some (mir-independent) energy AO; one might as 

well take t 
0 

to be infinite. since the singular part of c 
7T 

will only depend 

on the ratio of t 
0 

to the mass of the produced TT$ s. 

These approximations which we believe justified as m - 0, are 
T 
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certainly sufficient to provide a counter-example to the “derivation” of 

the Adler condition. In addition they allow us to derive an explicit func- 

tional form for the total cross section with one pion off shell. This model 

was extensively studied about a decade ago as an example of a singular 

Bethe-Salpeter equation in the ladder approximation. The fundamental 

paper is that of Ref. 6 which dealt mainly with the bound state problem. 

We found the paper by Swift and Lee’ (hereafter referred to as SL), which 

applied these methods to the scattering problem most useful. In the ap- 

pendix we outline the solution of SL for the ladder graphs of the X-,r4 

theory with massless bubbles--whose absorptive part is our multilzeripheral 

model. 

In this model the total mr cross section with one pion off shell 

(mass t) for large energy s i,s given by: 

lJc-2 
I7 en (7) 

* * ll 

A 
vc-1 v -1 v -1 lJ -1 

G(z) B(T’ -+~,F1(++;vc+L z) (8) 

v c ~(l+lQf>l ‘. (9) 
4lr 

The asymptotic behavior of this model is controlled by a fixed 

cut in angular momentum at J = v -1. 
c 

This leading singularity always 

lies above zero and for smaI1 enough coupling lies below one. Thus we 

can easily satisfy the Froissart bound in this model. The value of the 

cross section depends strongly on the off shell pion mass, t, for values 
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2 
of It/ large compared with m . 

TI 
This dependence is contained in G(z), 

which is normalized so that G(1) = 1; and arises due to the multi-pion 

thresholds in t, 2 which have all accumulated at t = mrr(smce we have set 

the produced pion mass equal to zero). These singularities combine to 

damp u,,(t. s) when + >>l, since 
l-n* 

2 
v -1 

UTT(L s) m 

CQn~, s) 
=G(+ x (2) 

A v -1 

ml: +x -t 
2 (&I. (10) 

c 
m 

77 

This factor is sufficient to remove the logarithmic divergence found by 

RV who made the approx G(- t2 ) zG(l) = 1. In fact if we insert G(-$) 
m 

s’ 
into Eq. (3), change variablesrto y =- t 

r-n 

2’ ==- 2 
and take the Ii&it 

l-II* l-n?? 
m -0 we have: 

* 

1 ’ c H(O) l’dx Jmdy (11) 
0 

The right hand side of (11) is certainly convergent with G(z) given by (8), 

and one no longer concludes that H(0) = 0. 

In conclusion this simple model illustrates that the one pion ex- 

change pole is a poor approximation for values of the momentum transfer 

large compared to the pion mass, and that the combination of the multi- 

pion cuts can provide a convergence factor for large 1 -+I that elimin- 
n-ATT 

ates the logarithmic divergence of RV. 
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Figure Captions 

Fig. 1 A diagram for n-v scattering which has an infrared singularity 

in the forward direction, but only there. 

Fig. 2 A diagram for 277-477 which leads to an infinite total cross 

section for fin scattering. 

F,ig. 3 Kinematics for ITT~ - 2n + anything. 

Fig. 4 The one pion exchange approximation for the amplitude in 

Fig. (4). 

Fig. 5 Multiple soft. pion emission processes leading to a strong 

t-dependence in urrrr(t9 M’), the square of the lower half of 

the diagram in Fig. (5). 

Fig. 6 A multiperipheral model for LT 
ml* 
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APPENDIX 

In this appendix we shall outline the solution to the multiper- 

ipheral model discussed in Section IV. This solution is contained in 

Ref. 6, however we present it here for completeness and because SL 

do not actually work out the explicit form for the off shell TI-IT scatter- 

ing amplitude. 

Consider the forward scattering of an on shell pion of momenta 

P of an off shell pion of momentum q. The scattering amplitude, in our 

model, is given by the equation: 

A(p, q) = AO(p, q) + / d4k A(p’ k, V(k-q) 

w4 (k2-m)' (12) 

where AO(p, q) = --l--,V(p+q) and V(p) is simply the basic massless bubble 

(27f) 
diagram. It can be taken to be the Fourier transform of a potential: 

V(p) ; Jd4x eip. xV(x) &if,- d4k 

(2~) (k2Hk -p)’ 
(13) 

It is useful to rewrite (12) as a differential equation by defining: 

V(x) Q(x) = j-d4q eiqXA(p, q) 

One then derives for 4 (x) the differential equation: 

(02trn2)2 [ @(x)-“ip.x] = V(x) O(x) 

which, if solved, gives A(p, q) using: 

(14) 

(15) 

A(p, q) =1 Jd4x .-iq’ x~(x)a(x) . 

w4 
(16) 
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One now performs a Wick rotation to the Euclidean metric, and 

expands a(x) in four dimensional spherical harmonics (r = 1x1) Q(x) = 

nem(=) Y,m*W. The potential is simply: 

V(x) = A-l=” 
(21r)4 r4 - 4 r 

(17) 

It then turns out” 7 that C$ nem= Qv (V = ntl) satisfies the equation: 

I d2 22 - 

-dr2 

+ Id- m2-4 
r dr 

r 
2 rDv(r) f (Oy-m ) r@v=V(r)r@v. (18) 

I 

Using the identity: 

(Ov-rn2)2->= j (oul-m2)r2(o 2 1 
r v2 

-m ‘, 

v; + I+ 2(v2t1) 

2 2 
v1 v2 

= (1,2-l)2-a (19) 

1/l -- 

v2 

;y+w:: 
d+~ JYzqzc- 

2 

It follows that the solutions of (18) are Iv.(mr) or Kv,(mr). Imposing the 

1 1 
boundary conditions one derives that: 

@Jr) = 

(2r)2y32p):x 

2wC [ 1 
v1 

(ml)-1 
v2 

(mr) ] . (20) 

We are now in a position to calculate A(p, q). We simply insert (20) into 

(16) and carry out the integral. The result is that 
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/ e - ++vl) I-(---$-) VW, -1 

-, -vtv,+3 ,-, .,,2 

5(+ vtv -1 -T- LJ-ul-1 ;vtl,L 2 2 
m -(~1-“21 1 

(21) 

\ ir \ 1 i+/l’(v+lj 

We are interested in the absorbtive part of A(p, q) for large 

energies, i. e. 9.. 1. This can be calculated by performing 
m 

a Watson-Sommerfeld transformation on (21) and keeping the leading 

singularity in the v-plane. It is easily seen that this i 

Vc =jX; at which point v 
2 

is analytic and 

The result is Eq. (7). 
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